题目内容

10.为了了解某市八年级5000名学生的平均身高,如果按10%的比例进行抽样调查,在这个问题中,下列说法:①这5000名学生是总体;②每个学生是个体;③500名学生的身高是总体的一个样本;④样本容量是10%,其中说法正确的有(  )
A.4个B.3个C.2个D.1个

分析 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.

解答 解:①这5000名学生的平均身高是总体,故①不符合题意;
②每个学生的身高是个体,故②不符合题意;
③500名学生的身高是总体的一个样本,故③符合题意;
④样本容量是500,故④不符合题意;
故选:D.

点评 考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

练习册系列答案
相关题目
1.问题提出:
如图,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为y,它各边上格点个数之和为x,它内部格点数为n,那么y与x,n有什么数量关系?
  问题探究:为解决上述问题,我们采取一般问题特殊化的策略,从最简单的情形入手:
探究一:当格点多边形内部的格点数n=0时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图①,图②,图③都是n=0时的格点多边形,y与x,n的数量如下表:
 图形序号 内部格点数n 各边上格点个数之和x 面积y
 ① 0 4 1
 ② 0 5 1.5
 ③ 0 6 2
分析 表格中数据,可知当n=0时,y与x之间的关系式为y=$\frac{1}{2}$x-1.
 探究二:当格点多边形内部的格点数n=1时,格点多边形的面积y与各边上的格点个数之和x之间的数量关系.
如图④,图⑤,图⑥都是n=1时的格点多边形,请完成下表:
 图形序号 内部格点数n 各边上格点个数之和x 面积y
 ④ 1 4 2
 ⑤ 1 5 2.5
 ⑥ 1  
分析表格中数据,可知当n=1时,y与x之间的关系式为y=$\frac{1}{2}$x.
探究三:如图⑦,图⑧,图⑨都是n=2时的格点多边形,类比上述探究方法,可知n=2时,y与x之间的关系式为y=$\frac{1}{2}$x+1.

问题解决:
综上可得:格点多边形的面积y,与它各边上格点个数之和x,内部格点数n之间的关系式为y=$\frac{1}{2}$x+n-1.
结论应用:
请用上面的结论计算下面图中格点多边形的面积.(写出计算过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网