题目内容

如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB为(  )
A、10cmB、16cm
C、8cmD、12cm
考点:角平分线的性质,等腰直角三角形
专题:
分析:根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BC=BE,然后求出△ADE的周长=AB.
解答:解:∵∠C=90°,BD平分∠CBA,DE⊥AB,
∴CD=DE,
在Rt△BCD和Rt△BED中,
BD=BD
CD=DE

∴Rt△BCD≌Rt△BED(HL),
∴BC=BE,
∴△ADE的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB,
∵△ADE的周长为8cm,
∴AB=8cm.
故选C.
点评:本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出△ADE的周长=AB是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网