题目内容

16.在?ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AD=DF,求证:AF平分∠BAD.

分析 (1)先证明四边形BFDE是平行四边形,再证明∠DEB=90°即可.
(2)欲证明AF平分∠BAD,只要证明∠DAF=∠BAF即可.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,即BE∥DF,
∵CF=AE,
∴DF=BE,
∴四边形BFDE是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形.
(2)由(1)可知AB∥CD,
∴∠BAF=∠AFD,
∵AD=DF,
∴∠DAF=∠AFD,
∴∠BAF=∠DAF,
即AF平分∠BAD.

点评 本题考查矩形的性质、菱形的性质、平行四边形的性质等知识,解题的关键是熟练掌握这些知识的应用,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网