题目内容

△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;

(2)∠CAB=2∠CDH.

(1)证明见解析(2)证明见解析 【解析】试题分析:(1)根据余角的性质得到∠AFD=∠AEC,证得∠CFE=∠CEF,得到CF=CE,根据等腰三角形的性质即可得到结论. (2)由于∠ADF=∠CHF=90°,∠AFD=∠CFH,得到△ADF∽△CFH,根据相似三角形的性质得到,由于∠AFC=∠DFH,得到△AFC∽△DFH,根据相似三角形的性质得到∠CAF=∠CDH,等量代换即可得到...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网