题目内容
用配方法解方程时,配方后所得的方程是( )
A. B.
C. D.
已知:抛物线.
(1)写出抛物线的开口方向、对称轴;
(2)函数y有最大值还是最小值?并求出这个最大(小)值;
(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.
已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )
A.m<-1 B.m<1 C.m>-1 D.m>-2
如图,先画线段,再分别点、为圆心,大于的同样长为半径画弧,两弧相交于点,联结、,延长到,使,联结.则________ °
方程的根是 _______________ .
△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,连接DH,求证:(1)EH=FH;
(2)∠CAB=2∠CDH.
计算:
(1) ﹣|﹣|+(﹣π)0﹣(﹣1)2015 .
(2) .
已知直角三角形的两边长是方程x2﹣7x+12=0的两根,则第三边长为( )
A. 7 B. 5 C. D. 5或
甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.