题目内容

17.已知关于x的一元二次方程x2-(k+3)x+3k=0.
(1)求证:不论k取何实数,该方程总有实数根.
(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.

分析 (1)求出根的判别式,利用偶次方的非负性证明;
(2)分△ABC的底边长为2、△ABC的一腰长为2两种情况解答.

解答 (1)证明:△=(k+3)2-4×3k=(k-3)2≥0,
故不论k取何实数,该方程总有实数根;
(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,
则(k-3)2=0,
解得k=3,
方程为x2-6x+9=0,
解得x1=x2=3,
故△ABC的周长为:2+3+3=8;
当△ABC的一腰长为2时,方程有一根为2,
方程为x2-5x+6=0,
解得,x1=2,x2=3,
故△ABC的周长为:2+2+3=7.

点评 本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网