题目内容
1.分析 根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再证明∠FAE=∠CBE,于是根据有两组角对应相等的两个三角形相似即可得到结论.
解答 证明:∵AB=AC,D是BC中点,
∴AD⊥BC,
∴∠ADC=90°,
∴∠FAE+∠AFE=90°,
∵BE⊥AC,
∴∠BEC=90°,
∴∠CBE+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠FAE=∠CBE,
∴△AFE∽△BCE.
点评 本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质,证题的关键是挖掘题目的隐藏条件:对顶角相等.
练习册系列答案
相关题目
13.
如图,在△ABC中,BD平分∠ABC,CD平分∠BCA,若∠D=3∠A,则∠A=( )
| A. | 32° | B. | 36° | C. | 40° | D. | 44° |