题目内容

6.如图所示,∠AOB=30°,角内有点P,PO=10cm,两边上各有一点Q,R(均不同于点O),则△PQR的周长最小值是10.

分析 设点P关于OA的对称点是E,关于OB的对称点是F,当点R、Q在EF上时,△PQR的周长=PQ+QR+PR=EF,此时周长最小.

解答 解:如图,
作出点P关于OA的对称点E,作出点P关于OB的对称点F,连接EF,交OA于Q,交OB于R.连接PQ,PR,PE,PF,OE,OF.
则PQ=EQ,PR=RF,
则△PQR的周长=PQ+QR+PR=EQ+QR+RF=EF.
∵∠AOP=∠AOE,∠POB=∠FOB,∠AOB=∠AOP+∠POB=30°,
∴∠EOF=60°,
又∵OE=OP,OF=OP,
∴OE=OF=10,
即△EOF是等边三角形,
∴EF=OP=10,
所以△PQR的周长的最小值为10.
故答案为:10.

点评 此题考查最短路径问题,关键是根据等腰直角三角形的判定和性质,轴对称的性质等知识进行分析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网