题目内容

10.如图,PA,PB是⊙O的切线,切点分别为A,B,∠APB=50°,C是⊙O上一点,则∠ACB的度数为(  )
A.50°B.55°C.60°D.65°

分析 要求∠ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解.

解答 解:连接OA,OB,
∵PA,PB是⊙O的切线,
∴PA⊥OA,PB⊥OB,
∴∠AOB=360°-(90°+90°+50°)=130°,
∴∠ACB=$\frac{1}{2}$∠AOB=65°.
故选D.

点评 本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数和得出∠ACB=$\frac{1}{2}$∠AOB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网