题目内容

12.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则a2+b2的值为(  )
A.36B.50C.28D.25

分析 根据题意,a、b可看作方程x2-6x+4=0的两根,则根据根与系数的关系得到a+b=6,ab=4,然后把原式变形得到原式=再利用整体代入的方法计算即可.

解答 解:∵a2-6a+4=0,b2-6b+4=0,且a≠b,
∴a,b可看作方程x2-6x+4=0的两根,
∴a+b=6,ab=4,
∴原式=(a+b)2-2ab=62-2×4=28,
故选C.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网