题目内容
14.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为15°.分析 根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C-∠CD1E1计算即可得解.
解答 解:∵∠CED=90°,∠D=30°,
∴∠DCE=60°,
∵△DCE绕点C顺时针旋转15°,
∴∠BCE1=15°,
∴∠BCD1=60°-15°=45°,
∴∠BCD1=∠A,
在△ABC和△D1CB中,
$\left\{\begin{array}{l}{AC=CB}&{\;}\\{∠BC{D}_{1}=∠A}&{\;}\\{AB=C{D}_{1}}&{\;}\end{array}\right.$,
∴△ABC≌△D1CB(SAS),
∴∠BD1C=∠ABC=45°,
∴∠E1D1B=∠BD1C-∠CD1E1=45°-30°=15°.
故答案为:15°.
点评 本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键.
练习册系列答案
相关题目
17.
如图是一个零件的立体图,该零件的俯视图是( )
| A. | B. | C. | D. |