ÌâÄ¿ÄÚÈÝ
1£®If we let£¼a£¾be the greatest prime number not more than a then the result of the expression£¼£¼3£¾¡Á£¼25£¾¡Á£¼30£¾£¾is£¨¡¡¡¡£©Èç¹û¶¨Ò壼a£¾Îª²»´óÓÚaµÄ×î´óÖÊÊý£¬Ôò£¼£¼3£¾¡Á£¼25£¾¡Á£¼30£¾£¾µÄֵΪ£¨¡¡¡¡£©
| A£® | 1333 | B£® | 1999 | C£® | 2001 | D£® | 2249 |
·ÖÎö ¸ù¾Ý£¼a£¾Îª²»´óÓÚaµÄ×î´óÖÊÊý£¬¿ÉµÃÏàÓ¦µÄÖÊÊý£¬¸ù¾ÝÓÐÀíÊýµÄ³Ë·¨£¬¿ÉµÃ»ý£¬ÔÙ¸ù¾Ý£¼a£¾Îª²»´óÓÚaµÄ×î´óÖÊÊý£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¼£¼3£¾¡Á£¼25£¾¡Á£¼30£¾£¾=£¼3¡Á23¡Á29£¾=£¼2001£¾=1999£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÁËÖÊÊýÓëºÏÊý£¬ÀûÓã¼a£¾Îª²»´óÓÚaµÄ×î´óÖÊÊýµÃ³öÏàÓ¦µÄ×î´óÖÊÊýÊǽâÌâ¹Ø¼ü£¬×¢Òâ²»´óÓÚ2001µÄ×î´óÖÊÊýÊÇ1999£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®
¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏA=90¡ã£¬AB=$\sqrt{2}$£¬µãDλÓÚ±ßBCµÄÖеãÉÏ£®µãEÔÚABÉÏ£¬µãFÔÚACÉÏ£¬¡ÏEDF=45¡ã£¬¸ø³öÒÔϽáÂÛ£º
¢Ùµ±BE=1ʱ£¬S¡÷CDF=$\frac{\sqrt{2}}{2}$£»¢Ú¡ÏDFC=¡ÏEDB£»¢ÛCF•BE=1£»¢ÜC¡÷AEF=$\sqrt{2}$£»¢ÝS¡÷AEF+2S¡÷DEF=$\frac{1}{2}$£»
ÕýÈ·µÄÓУ¨¡¡¡¡£©
¢Ùµ±BE=1ʱ£¬S¡÷CDF=$\frac{\sqrt{2}}{2}$£»¢Ú¡ÏDFC=¡ÏEDB£»¢ÛCF•BE=1£»¢ÜC¡÷AEF=$\sqrt{2}$£»¢ÝS¡÷AEF+2S¡÷DEF=$\frac{1}{2}$£»
ÕýÈ·µÄÓУ¨¡¡¡¡£©
| A£® | ¢Ù¢Ú¢Û | B£® | ¢Ù¢Û¢Ü¢Ý | C£® | ¢Ú¢Û¢Ü | D£® | ¢Û¢Ü¢Ý |
11£®Å×ÎïÏßy=ax2+bx+3£¨a¡Ù0£©¹ýA£¨4£¬4£©£¬B£¨2£¬m£©Á½µã£¬µãBµ½Å×ÎïÏß¶Ô³ÆÖáµÄ¾àÀë¼ÇΪd£¬Âú×ã0£¼d¡Ü1£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | m¡Ü2»òm¡Ý3 | B£® | m¡Ü3»òm¡Ý4 | C£® | 2£¼m£¼3 | D£® | 3£¼m£¼4 |