题目内容
20.在数$\frac{4}{5}$、-$\sqrt{11}$、0.$\stackrel{•}{7}$、-π、$\root{3}{27}$、0.1010010001…(相邻两个1之间依次多一个0)中,无理数有( )个.| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据无理数是无限不循环小数,可得答案.
解答 解:-$\sqrt{11}$、-π、0.1010010001…(相邻两个1之间依次多一个0)是无理数,
故选:C.
点评 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,$\sqrt{6}$,0.8080080008…(每两个8之间依次多1个0)等形式.
练习册系列答案
相关题目
10.问题背景:表是某通讯公司推出的移动电话两种计费方式:
若设一个月内用移动电话主叫为t分(t为正整数),根据主叫时间t分析并选择省钱的计费方式.
分析说明:由上表可知,计费与主叫时间相关,计费时首先要看主叫是否超过限定时间.因此,考虑t的取值时,两个主叫限定时间150分和350分是不同时间范围的划分点.
列表解析:当t在不同时间范围内取值时,方式一和方式二的计费如表:(用含t的代数式将表填写完整)
探索比较:由以上分析可知,计费随着主叫时间的变化而变化,比较如下:
①当t小于或等于150分时,因为58<88,所以按方式一的计费少;
②当t大于150且小于350时,方式一的计费由58元增加到108元,而方式二的计费一直是88元,故可能存在某主叫时间按方式一和方式二的计费相等,请你列方程给予解答说明.
③当t=350时,因为108>88,所以按方式二的计费较少;
④当t大于350时,由上表可以看出,方式一的计费为108元加上超过350分部分的超时费,方式二的计费为88元加上超过350分部分的超时费,所以按方式二的计费少.
归纳发现:综合上述分析,可以发现:
主叫时间小于270分时,选择方式一省钱;
主叫时间大于270分时,选择方式二省钱.
| 月使用费/元 | 主叫限定时间/分 | 主叫超时费/(元/分) | 被叫 | |
| 方式一 | 58 | 150 | 0.25 | 免费 |
| 方式二 | 88 | 350 | 0.19 | 免费 |
分析说明:由上表可知,计费与主叫时间相关,计费时首先要看主叫是否超过限定时间.因此,考虑t的取值时,两个主叫限定时间150分和350分是不同时间范围的划分点.
列表解析:当t在不同时间范围内取值时,方式一和方式二的计费如表:(用含t的代数式将表填写完整)
| 主叫时间t/分 | 方式一计费/元 | 方式二计费/元 |
| t小于150 | 58 | 88 |
| t=150 | 58 | 88 |
| t大于150且小于350 | 58+0.25(t-150) | 88 |
| t=350 | 108 | 88 |
| t大于350 | 108+0.25(t-350) | 88+0.19(t-350) |
①当t小于或等于150分时,因为58<88,所以按方式一的计费少;
②当t大于150且小于350时,方式一的计费由58元增加到108元,而方式二的计费一直是88元,故可能存在某主叫时间按方式一和方式二的计费相等,请你列方程给予解答说明.
③当t=350时,因为108>88,所以按方式二的计费较少;
④当t大于350时,由上表可以看出,方式一的计费为108元加上超过350分部分的超时费,方式二的计费为88元加上超过350分部分的超时费,所以按方式二的计费少.
归纳发现:综合上述分析,可以发现:
主叫时间小于270分时,选择方式一省钱;
主叫时间大于270分时,选择方式二省钱.
15.三角形两边长分别为2和4,第三边长是方程x(x-4)-2(x-4)=0的解,则这个三角形周长为( )
| A. | 8 | B. | 8和10 | C. | 10 | D. | 8 或10 |
10.公路养护小组乘车沿东西公路巡视维护,某天早上从A地出发,晚上最后到达B处,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如表.(单位:km)
(1)收工时B地在A地的何方,相距多远?
(2)在第5次纪录时距A地最远.
(3)若每1km耗油0.3升,问共耗油多少升?
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
| -4 | +7 | -9 | +8 | +6 | -5 | -2 |
(2)在第5次纪录时距A地最远.
(3)若每1km耗油0.3升,问共耗油多少升?