题目内容

6.化简:$\frac{1+2\sqrt{3}+\sqrt{5}}{(1+\sqrt{3})(\sqrt{3}+\sqrt{5})}$+$\frac{\sqrt{5}+2\sqrt{7}+3}{(\sqrt{5}+\sqrt{7})(\sqrt{7}+3)}$+…+$\frac{\sqrt{2n-1}+2\sqrt{2n+1}+\sqrt{2n+3}}{(\sqrt{2n-1}+\sqrt{2n+1})(\sqrt{2n+1}+\sqrt{2n+3})}$.

分析 先把分子变形后利用分式的加法的逆运算得到原式=$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{5}}$+$\frac{1}{\sqrt{5}+\sqrt{7}}$+$\frac{1}{\sqrt{7}+3}$+…+$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$+$\frac{1}{\sqrt{2n+1}+\sqrt{2n+3}}$,然后分母有理化后合并即可.

解答 解:原式=$\frac{1+\sqrt{3}+\sqrt{3}+\sqrt{5}}{(1+\sqrt{3})(\sqrt{3}+\sqrt{5})}$+$\frac{\sqrt{5}+\sqrt{7}+\sqrt{7}+3}{(\sqrt{5}+\sqrt{7})(\sqrt{7}+3)}$+…+$\frac{\sqrt{2n-1}+\sqrt{2n+1}+\sqrt{2n+1}+\sqrt{2n+3}}{(\sqrt{2n-1}+\sqrt{2n+1})(\sqrt{2n+1}+\sqrt{2n+3})}$
=$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{5}}$+$\frac{1}{\sqrt{5}+\sqrt{7}}$+$\frac{1}{\sqrt{7}+3}$+…+$\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$+$\frac{1}{\sqrt{2n+1}+\sqrt{2n+3}}$
=$\frac{1}{2}$($\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+3-$\sqrt{7}$+…+$\sqrt{2n+1}$-$\sqrt{2n-1}$+$\sqrt{2n+3}$-$\sqrt{2n+1}$)
=$\frac{1}{2}$($\sqrt{2n+3}$-1)
=$\frac{\sqrt{2n+3}-1}{2}$.

点评 本题考查了二次根式的混合运算:二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用;二次根式的运算结果要化为最简二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网