题目内容
5.分析 过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=$\frac{1}{2}$AB•CM=$\frac{1}{2}$AC•BC,得出CM的值,即PC+PQ的最小值.
解答 解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,![]()
∵AD是∠BAC的平分线.
∴PQ=PM,这时PC+PQ有最小值,即CM的长度,
∵AC=6,BC=8,∠ACB=90°,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}=\sqrt{{6}^{2}+{8}^{2}}=10$,
∵S△ABC=$\frac{1}{2}$AB•CM=$\frac{1}{2}$AC•BC,
∴CM=$\frac{AC•BC}{AB}=\frac{6×8}{10}$=$\frac{24}{5}$.
故答案为:$\frac{24}{5}$.
点评 本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.
练习册系列答案
相关题目
13.
如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④(a+c)2-b2<0.其中正确的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
20.
如图,在△ABC中,AB=AC=5,BC=7,△ABC的内切圆⊙O与边BC相切于点D,过点D作DE∥AC交⊙O于点E,过点E作⊙O的切线交BC于点F,则DE-EF的值等于( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{4}$ |
17.
如图,水平线l1∥l2,铅垂线l3∥l4,l1⊥l3,若选择l1、l2其中一条当成x轴,且向右为正方向,再选择l3、l4其中一条当成y轴,且向上为正方向,并在此平面直角坐标系中画出二次函数y=ax2-ax-a的图象,则下列关于x、y轴的叙述,正确的是( )
| A. | l1为x轴,l3为y轴 | B. | l1为x轴,l4为y轴 | C. | l2为x轴,l3为y轴 | D. | l2为x轴,l4为y轴 |