题目内容

3.如图,已知A是双曲线y=$\frac{2}{x}$(x>0)上一点,过点A作AB∥x轴,交双曲线y=-$\frac{3}{x}$(x<0)于点B,若OA⊥OB,则$\frac{OA}{OB}$的值为(  )
A.$\frac{2}{3}$B.$\frac{4}{9}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{2}$

分析 首先根据A、B点所在位置设出A、B两点的坐标,再利用勾股定理表示出AO2,BO2以及AB的长,再表示出$\frac{A{O}^{2}}{B{O}^{2}}$,进而可得到$\frac{AO}{BO}$.

解答 解:∵A点在双曲线y=$\frac{2}{x}$(x>0)上一点,
∴设A($\frac{2}{m}$,m),
∵AB∥x轴,B在双曲线y=-$\frac{3}{x}$(x<0)上,
∴设B(-$\frac{3}{m}$,m),
∴OA2=$\frac{4}{{m}^{2}}$+m2,BO2=$\frac{9}{{m}^{2}}$+m2
∵OA⊥OB,
∴OA2+BO2=AB2
∴$\frac{4}{{m}^{2}}$+m2+$\frac{9}{{m}^{2}}$+m2=($\frac{2}{m}$+$\frac{3}{m}$)2
∴m2=$\frac{6}{{m}^{2}}$,
∴$\frac{A{O}^{2}}{B{O}^{2}}$=$\frac{\frac{4}{{m}^{2}}+{m}^{2}}{\frac{9}{{m}^{2}}+{m}^{2}}$=$\frac{\frac{10}{{m}^{2}}}{\frac{15}{{m}^{2}}}$=$\frac{2}{3}$,
∴$\frac{AO}{BO}$=$\frac{\sqrt{6}}{3}$,
故选C.

点评 此题主要考查了反比例函数图象上点的坐标特点,以及勾股定理的应用,关键是表示出A、B两点的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网