题目内容
17.(1)求证:CD为⊙O的切线.
(2)若圆心O到弦DB的距离为1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
分析 (1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD-S△BOD,即可求得答案.
解答
(1)证明:连接OD,
∵BC是⊙O的切线,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵点D在⊙O上,
∴CD为⊙O的切线;
(2)解:过点O作OF⊥BD于点F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF=$\sqrt{3}$,
∵OF⊥BD,
∴BD=2BF=2$\sqrt{3}$,∠BOD=2∠BOF=120°,
∴S阴影=S扇形OBD-S△BOD=$\frac{120π×{2}^{2}}{360}$-$\frac{1}{2}$×2$\sqrt{3}$×1=$\frac{4}{3}$π-$\sqrt{3}$.
点评 此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目
8.随着市场竞争日益激烈,某商品一个月内连续两次降价,第一次降价10%,第二次再降价10%后,售价为810元,则原售价为( )
| A. | 900元 | B. | 1000元 | C. | 960元 | D. | 920元 |
9.
两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图所示,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为( )
| A. | (3-a,-b) | B. | (b,3-a) | C. | (a-3,-b) | D. | (b+3,a) |