题目内容

如图,三内角皆小于120°的三角形,分别以AB,BC,CA为边,向三角形外侧做正三角形ABD,ACE,BCF,然后连接AF,BE,CD,这三线交于一点O,那么下列结论中
①△ADC≌△ABE; ②△AMD∽△OMB; ③cos∠COE=
1
2
;④∠AOB=∠AOC=∠BOC=120°
正确的个数是(  )
A、1B、2C、3D、4
考点:相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质
专题:压轴题
分析:根据全等三角形的判定方法和相似三角形的判定方法以及等边三角形的性质逐项分析即可.
解答:解:①∵△ADB,△AEC是等边三角形,
∴AD=AB,AE=AC,∠DAB=∠EAC=60°,
∵∠DAC=∠DAB+∠BAC,∠EAB=∠EAC+∠BAC,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
AD=AB
∠DAC=∠BAE
AC=AE

∴△ADC≌△ABE,故①正确;
②∵△ADC≌△ABE,
∴∠ADC=∠ABE,
∵∠AMD=∠OMB,
∴△AMD∽△OMB,故②正确;
③∵△AMD∽△OMB,
∴∠DAM=∠BOM=60°,
∴∠COE=∠BOM=60°,
∴cos∠COE=
1
2
,故③正确;
④由③可知:∠COE=∠BOM=60°,
∴∠AOB=∠AOC=∠BOC=120°,故④正确;
故选D.
点评:本题考查了等边三角形的性质、全等三角形的判定和性质以及60度角的锐角三角函数值,题目的解答环环相扣,题目设计新颖独特.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网