题目内容

如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为(  )

A. 2km B. 3km C. km D. 3km

B 【解析】试题分析:过点C作CE⊥BD,则∠DCE=30°,根据CD=6km可得:CE=3km,故AB=CE=3km,故选B.
练习册系列答案
相关题目

用配方法将y=-2x2+4x+6化成y=a(x+h)2+k的形式,则a+h+k的值为( )

A. 5

B. 7

C. -1

D. -2

A 【解析】 ∴a=-2,h=-1,k=8 ∴a+h+k=-2+(-1)+8=5 故选:A.

用配方法把二次函数y=l+2x-x2化为y=a(x-h)2+k的形式,作出它的草图,回答下列问题.

(1)求抛物线的顶点坐标和它与x轴的交点坐标;

(2)当x取何值时,y随x的增大而增大?

(3)当x取何值时,y的值大于0?

y=-(x-1)2+2(1)顶点坐标为(1,2),与x轴的两个交点坐标分别为(1-,0),(1+,0)(2)当x<1时,y随x的增大而增大.(3)当l-<x<1+时,y的值大于0 【解析】分析:(1)利用配方法得到y=-(x-1)²+2,则根据二次函数的性质可得到抛物线的顶点坐标;再利用抛物线与x轴的交点问题,通过解方程-(x-1)²+2=0可得到它与x轴的交点坐标;(2)根据二次函数的性质...

海中有一个小岛A,它的周围a海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东75°方向上,航行12海里到达D点,这是测得小岛A在北偏东60°方向上.若渔船不改变航线继续向东航行而没有触礁危险,则a的最大值为(  )

A. 5 B. 6 C. 6 D. 8

B 【解析】试题分析:作AC⊥BD于点C, ∠ABD=90°-75°=15°, ∵∠ADC=90°-60°=30°, ∴∠BAD=∠ADC-∠ABD=30°-15°=15°, ∴∠ABD=∠BAD, ∴BD=AD=12(海里), 在直角△ADC中,AC=AD=×12=6(海里).故选B.

如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为(  )

A. 30海里 B. 30海里 C. 60海里 D. 30海里

A 【解析】试题分析:过点P作PC⊥AB于点C. 在Rt△PAC中,∵PA=60海里,∠PAC=30°, ∴CP=AP=30海里. 在Rt△PBC中,∵PC=30海里,∠PBC=∠BPC=45°, ∴PB=PC=30海里. 即海轮所在的B处与灯塔P的距离为30海里.

如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为( )

A.24 B.12 C.6 D.3

B 【解析】 试题分析:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB, ∴四边形PQCD与四边形APQB都为平行四边形, ∴△PDC≌△CQP,△ABP≌△QPB, ∴S△PDC=S△CQP,S△ABP=S△QPB, ∵EF为△PCB的中位线, ∴EF∥BC,EF=BC, ∴△PEF∽△PBC,且相似比为1:2, ∴S△PEF:S...

公路全长为skm,骑自行车t小时可到达,为了提前半小时到达,骑自行车每小时应多走_____________.

- 【解析】公路全长为skm,骑自行车t小时可到达,则速度为 若提前半小时到达,则速度为 则现在每小时应多走( )

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网