ÌâÄ¿ÄÚÈÝ
3£®ÉÀí½â£ºÐ¶¨Ò壺¶Ô·Ç¸ºÊµÊýx¡°ËÄÉáÎåÈë¡°µ½¸öλµÄÖµ¼ÆÎª£¼x£¾£¬¼´£ºµ±nΪ·Ç¸ºÕûÊýʱ£¬Èç¹û$n-\frac{1}{2}¡Üx£¼n+\frac{1}{2}£¬Ôò£¼x£¾=n$£¬ÀýÈ磼0£¾=£¼0.48£¾=0£¬£¼0.64£¾=£¼1.49£¾=1£¬£¼2£¾=2£¬£¼3.5£¾=£¼4.12£¾=4£¬¡ÊÔ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Ìî¿Õ£º
¢Ù£¼¦Ð£¾=3£¨¦ÐΪԲÖÜÂÊ£©
¢ÚÈç¹û£¼x-1£¾=3£¬ÔòʵÊýxµÄȡֵ·¶Î§Îª3.5¡Üx£¼4.5
¢Ûд³öÒ»×éx£¬yÖµ£¬Ê¹µÈʽ£¼x+y£¾=£¼x£¾+£¼y£¾²»³ÉÁ¢£®ÀýÈ磺x=0.6£¬y=0.7£¨Ð´Ò»×é¼´¿É£©
£¨2£©ÉènΪ³£Êý£¬ÇÒΪÕýÕûÊý£¬º¯Êý$y={x^2}-x+\frac{1}{4}$µÄ×Ô±äÁ¿xÂú×㣼x£¾=nʱ£¬¶ÔÓ¦µÄº¯ÊýÖµyΪÕûÊýµÄ¸öÊý¼ÇΪa£¬ÇóaµÄÖµ£¨ÓÃn±íʾ£©
·ÖÎö £¨1£©¢Ù¸ù¾Ý£¼x£¾µÄ¶¨Òå¼´¿ÉµÃ³ö½áÂÛ£®
¢Ú¸ù¾Ý£¼x£¾¶¨Ò壬ÓÉ£¼x-1£¾=3Áгö·½³Ì¼´¿É½â¾ö£®
¢Û¾Ù·´Àý˵Ã÷¼´¿É£®
£¨2£©Óɺ¯Êýy=x2-x+$\frac{1}{4}$=£¨x-$\frac{1}{2}$£©2£¬nΪÕûÊý£¬ÓÖ£¼x£¾=n£¬µ±n-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬Áгö²»µÈʽ£¬¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©¢ÙÓÉÌâÒâ¿ÉµÃ£º£¼¦Ð£¾=3£»
¹Ê´ð°¸Îª£º3£¬
¢Ú¡ß£¼x-1£¾=3£¬
¡à2.5¡Üx-1£¼3.5
¡à3.5¡Üx£¼4.5£»
¹Ê´ð°¸Îª£º3.5¡Üx£¼4.5£»
¢Û¾Ù·´Àý£º£¼0.6£¾+£¼0.7£¾=1+1=2£¬¶ø£¼0.6+0.7£¾=£¼1.3£¾=1£¬
¡à£¼0.6£¾+£¼0.7£¾¡Ù£¼0.6+0.7£¾£¬
¡à£¼x+y£¾=£¼x£¾+£¼y£¾²»Ò»¶¨³ÉÁ¢£»
¹Ê´ð°¸·Ö±ðΪ0.6£¬0.7£®
£¨2£©£©¡ßº¯Êýy=x2-x+$\frac{1}{4}$=£¨x-$\frac{1}{2}$£©2£¬nΪÕûÊý£¬ÓÖ£¼x£¾=n
µ±n-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$ʱ£¬yËæxµÄÔö´ó¶øÔö´ó£¬
¡à£¨n-1£©2¡Üy£¼n2£¬
¡àn2-2n+1¡Üy£¼n2
¡ßyΪÕûÊý£¬
¡ày=n2-2n+1£¬n2-2n+2£¬n2-2n+3£¬¡£¬n2-2n+2n£¬¹²2n-1¸öy£¬
¡àa=2n-1
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌ⣬½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÀí½â£º¶Ô·Ç¸ºÊµÊýx¡°ËÄÉáÎåÈ롱µ½¸öλµÄÖµ¼ÇΪ£¼x£¾£¬¼´£ºµ±nΪ·Ç¸ºÕûÊýʱ£¬Èç¹ûn-$\frac{1}{2}$¡Üx£¼n+$\frac{1}{2}$£¬Ôò£¼x£¾=n£¬Ñ§»á°ÑÎÊÌâת»¯Îª²»µÈʽ£¬ÊôÓÚÖп¼´´ÐÂÌâÄ¿£®
| A£® | ¢Ù | B£® | ¢Ú | C£® | ¢Û | D£® | ¢Ù¢Ú»ò¢Ù¢Û»ò¢Ú¢Û |