题目内容

某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号2号3号4号5号总数
甲班891009611897500
乙班1009511091104500
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:
(1)计算两班的优秀率.
(2)求两班比赛成绩的中位数.
(3)估计两班比赛数据的方差哪一个小?
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的由.
考点:方差,统计表,中位数
专题:计算题
分析:(1)根据统计表得到甲班有2个优秀,乙班有3个优秀,然后根据百分比的意义求解;
(2)先把两组数据由小到大排列,然后根据中位数的定义求解;
(3)比较两组数据,得到甲班的成绩波动比乙班的波动大,根据方差的意义得到乙的方差小;
(4)根据优秀率、中位数和方差的意义比较两班的成绩.
解答:解:(1)甲班的优秀率=
2
5
=40%;乙班的优秀率=
3
5
=60%;
(2)甲班的5名学生的比赛成绩由小到大排列为89,96,97,100,118,所以甲班的成绩的中位数为97;
乙班的5名学生的比赛成绩由小到大排列为91,95,100,104,110,所以乙班的成绩的中位数为100;
(3)由于甲班的成绩波动比乙班的波动大,所以可估计乙的方差小;
(4)因为乙班的优秀率比甲班大,乙班的中位数比甲班大,且乙班的方差比甲班小,所以乙班的成绩比甲班好,所以把冠军奖状发给甲班.
点评:本题考查了方差:方差公式为s2=
1
n
[(x1-x?)2+(x2-x?)2+…+(xn-x?)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网