题目内容

20.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.

解答 解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,
故P(所作三角形是等腰三角形)=$\frac{3}{4}$.
故选D.

点评 此题主要考查了概率公式和等腰三角形的判定,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网