题目内容
12.分析 首先根据题意寻找可以证明△AEB≌△CFA的条件,再利用全等三角形的性质可以得到AE=CF,BE=AF,再用勾股定理
解答 解:如图,![]()
过点B作BM⊥EF,过点C作CN⊥EF,
∴∠AMB=∠CNA=90°.
∴∠MAB+∠MBA=90°.
又∵∠BAC=90°,
∴∠MAB+∠CAN=90°.
∴∠MBA=∠CAN.
在△AMB和△CNA中$\left\{\begin{array}{l}{∠AMB=∠CNA}\\{∠MBA=CAN}\\{AB=AB}\end{array}\right.$
∴△AMB≌△CNA,
∴AM=CN,BM=AN,
∵BE=4$\sqrt{2}$,CF=5$\sqrt{2}$,
∴MN=AN+AM=BM+CN,
∵点A为EF的中点,
∴AE=AF=$\frac{1}{2}$EF=3,
∴CN=AM=ME+3
FN=AN-AF=AN-3=BM-3
在Rt△BME中,BM2+ME2=BE2,
BM2+ME2=32①,
在Rt△CFN中,CN2+FN2=CF2
(ME+3)2+(BM-3)2=50②,
由①②得,ME=BM=4,
∴△ABE的面积=$\frac{1}{2}$×AE×BM=$\frac{1}{2}$×3×4=6.
点评 此题面积与等积变换,主要考查了三角形全等的判定及性质,解决问题的关键是证明△AEB≌△CFA.
练习册系列答案
相关题目
3.
如图,A,B两点位于一个池塘的两端,冬冬想用绳子测量A,B两点间的距离,但绳子不够长,一位同学帮他想了一个办法:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测得DE的长为15m,则A,B两点间的距离为( )
| A. | 7.5m | B. | 15m | C. | 22.5m | D. | 30m |
17.下列说法中,不正确的是( )
| A. | 0既不是正数,也不是负数 | B. | 当a>1时,则a的倒数大于0且小于1 | ||
| C. | a与-a互为相反数 | D. | |a|表示正数 |