题目内容

17.观察下列各式:
$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$=1+$\frac{1}{1}$-$\frac{1}{2}$=1$\frac{1}{2}$;$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$=1+$\frac{1}{2}$-$\frac{1}{3}$=1$\frac{1}{6}$;
$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$=1+$\frac{1}{3}$-$\frac{1}{4}$=1$\frac{1}{12}$,…
请你根据以上三个等式提供的信息解答下列问题
①猜想:$\sqrt{1+\frac{1}{{7}^{2}}+\frac{1}{{8}^{2}}}$=1+$\frac{1}{7}$-$\frac{1}{8}$=1$\frac{1}{56}$;
②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{{n}^{2}+n+1}{{n}^{2}+n}$;
③应用:计算$\sqrt{\frac{82}{81}+\frac{1}{100}}$.

分析 ①直接利用利用已知条件才想得出答案;
②直接利用已知条件规律用n(n为正整数)表示的等式即可;
③利用发现的规律将原式变形得出答案.

解答 解:①猜想:$\sqrt{1+\frac{1}{{7}^{2}}+\frac{1}{{8}^{2}}}$=1+$\frac{1}{7}$-$\frac{1}{8}$=1$\frac{1}{56}$;
故答案为:1+$\frac{1}{7}$-$\frac{1}{8}$,1$\frac{1}{56}$;

②归纳:根据你的观察,猜想,写出一个用n(n为正整数)表示的等式:
$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{{n}^{2}+n+1}{{n}^{2}+n}$;

③应用:$\sqrt{\frac{82}{81}+\frac{1}{100}}$
=$\sqrt{1+\frac{1}{81}+\frac{1}{100}}$
=$\sqrt{1+\frac{1}{{9}^{2}}+\frac{1}{1{0}^{2}}}$
=1+$\frac{1}{9}$-$\frac{1}{10}$
=1$\frac{1}{90}$.

点评 此题主要考查了二次根式的性质与化简,正确发现数字变化规律是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网