题目内容
考点:旋转的性质
专题:计算题
分析:由∠ACB=∠DEC=90°,∠A=45°,∠D=30°得到∠DCE=60°,△ABC为等腰直角三角形,再根据旋转的性质得∠D1CE1=∠DCE=60°∠BCE1=15°,所以•∠D1CB=45°,于是可判断OC为等腰直角三角形ABC斜边上的中线,则OC⊥AB,OC=OA=
AB=3,则OD=CD-OC=4,然后在Rt△AOD1中根据勾股定理计算AD1.
| 1 |
| 2 |
解答:解:∵∠ACB=∠DEC=90°,∠A=45°,∠D=30°
∴∠DCE=60°,△ABC为等腰直角三角形,
∵三角板DCE绕着点C顺时针旋转15°得到△D1CE1,
∴∠D1CE1=∠DCE=60°∠BCE1=15°,
∴∠D1CB=45°,
∴OC平分∠ACB,
∴CO⊥AB,OA=OB,
∴OC=OA=
AB=
×6=3,
∴OD=CD-OC=7-3=4,
在Rt△AOD1中,AD1=
=
=5.
故答案为5.
∴∠DCE=60°,△ABC为等腰直角三角形,
∵三角板DCE绕着点C顺时针旋转15°得到△D1CE1,
∴∠D1CE1=∠DCE=60°∠BCE1=15°,
∴∠D1CB=45°,
∴OC平分∠ACB,
∴CO⊥AB,OA=OB,
∴OC=OA=
| 1 |
| 2 |
| 1 |
| 2 |
∴OD=CD-OC=7-3=4,
在Rt△AOD1中,AD1=
| AO2+OD12 |
| 32+42 |
故答案为5.
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质和勾股定理.
练习册系列答案
相关题目