题目内容

3.已知,如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC,CE∥DB.
求证:四边形OBEC是菱形.

分析 先由已知条件证明四边形OBEC是平行四边形,再由矩形的性质得出OB=OC,由菱形的判定方法即可得出结论.

解答 证明:∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
∵四边形ABCD是矩形,
∴OC=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC=BD,
∴OB=OC,
∴四边形OBEC是菱形.

点评 本题考查了矩形的性质、平行四边形的判定、菱形的判定;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网