题目内容

17.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,在折叠,使AD落在对角线BD上,得折痕DG,若AB=4,BC=3,求DG的长.

分析 首先由折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,即可得:∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD-DE=5-3=2,BG=AB-AG=4-x,在Rt△BEG中利用勾股定理,即可求得AG的长,然后根据勾股定理即可得到结论.

解答 解:过点G作GE⊥BD于E,
根据题意可得:∠GDA=∠GDB,AD=ED,
∵四边形ABCD是矩形,
∴∠A=90°,AD=BC=3,
∴AG=EG,ED=3,
∵AB=4,BC=3,∠A=90°,
∴BD=5,
设AG=x,则GE=x,BE=BD-DE=5-3=2,BG=AB-AG=4-x,
在Rt△BEG中,EG2+BE2=BG2
即:x2+4=(4-x)2
解得:x=$\frac{3}{2}$,
∴AG=$\frac{3}{2}$,
∴DG=$\sqrt{A{D}^{2}+A{G}^{2}}$=$\frac{3}{2}$$\sqrt{5}$.

点评 此题考查了折叠的性质、矩形的性质以及勾股定理等知识.此题综合性很强,难度适中,解题的关键是方程思想与数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网