题目内容

12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,若∠A=60°,AD=2cm,则AB=8cm.

分析 根据同角的余角相等求出∠ACD=∠B=30°,再根据30°角所对的直角边等于斜边的一半求出AC,再求出AB的长即可得解.

解答 解:∵∠ACB=90°,CD⊥AB,
∴∠B+∠A=90°,∠A+∠ACD=90°,
∴∠ACD=∠B=90°-∠A=30°,
∵AD=2cm,
∴AC=2AD=4cm,
∴AB=2AC=8cm,
故答案为:8cm.

点评 本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网