题目内容

3.如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(35,m)在此“波浪线”上,则m的值为-2.

分析 根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值.

解答 解:∵一段抛物线:y=-x(x-3)(0≤x≤3),
∴图象与x轴交点坐标为:(0,0),(3,0),
∵将C1绕点A1旋转180°得C2,交x轴于点A2
将C2绕点A2旋转180°得C3,交x轴于点A3

如此进行下去,直至得C12
∴C13的解析式与x轴的交点坐标为(33,0),(36,0),且图象在x轴下方,
∴C12的解析式为:y12=(x-33)(x-35),
当x=35时,y=(35-33)×(35-36)=-2.
故答案为:-2.

点评 此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网