题目内容

4.如图,已知BE,CF是△ABC的高,P为BE延长线上的-点,Q为CF上一点,△PAB≌△AQC,且AB与QC是对应边,试说明AP⊥AQ.

分析 由全等三角形的性质得出对应边相等AP=AQ,对应角相等∠P=∠QAC,再由BE⊥AC,根据互余两角的关系得出∠QAC+∠PAE=90°,即可得出结论.

解答 证明:∵△PAB≌△AQC,
∴AP=AQ,∠P=∠QAC,
∵BE⊥AC,
∴∠AEP=90°,
∴∠P+∠PAE=90°,
∴∠QAC+∠PAE=90°,
即∠PAQ=90°,
∴AP⊥AQ.

点评 本题考查了全等三角形的性质、互余两角的关系、垂线的判定;熟练掌握全等三角形的性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网