题目内容

3.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,2),AC=4,则这种变换可以是(  )
A.△ABC绕点C逆时针旋转90°,再向下平移2
B.△ABC绕点C顺时针旋转90°,再向下平移2
C.△ABC绕点C顺时针旋转90°,再向下平移6
D.△ABC绕点C逆时针旋转90°,再向下平移6

分析 观察各选项,先旋转再平移,则要顺时针旋转90°,由于AC=4,OC=2,则旋转后的三角形要向下平移6个单位得到Rt△ODE.

解答 解:把Rt△ABC先绕点C顺时针旋转90°,再向下平移6个单位可得到Rt△ODE.
故选C.

点评 本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°;记住关于原点对称的点的坐标特征.也考查了平移变换.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网