如图,数轴上有A、B、C、D四个整数点(即各点均表示整数),且3AB=BC=2CD.若A、D两点所表示的数分别是﹣6和5,则线段AC的中点所表示的数是(  )

A. ﹣3 B. ﹣1 C. 3 D. ﹣2

D 【解析】首先设BC为6x,根据3AB=BC=2CD表示出AB=2x,CD=3x,然后根据线段AD的长度建立方程,进而求出点C所表示的数,再利用两点之间的中点公式即可得出答案. 【解析】 设BC=6x, ∵3AB=BC=2CD, ∴AB=2x,CD=3x, ∴AD=AB+BC+CD=11x, ∵A,D两点所表示的数分别是?6和5, ∴AD=11, ...

在一个口袋中,共有50个球,其中白球20个,红球20个,其余为篮球,从中任摸一球,摸到不是白球的概率是( )

A. B. C. D.

C 【解析】口袋中,共有50个球,其中白球20个,那么不是白球的球共有30个,所以摸到不是白球的概率是,故选C.

如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.

轮船到达C处的时间为13时30分,到达D处的时间15时30分 【解析】试题分析:首先根据题意得出∠BAC=30°,∠BCD=60°,从而得出∠BAC=∠CBA=30°,则AC=BC,根据题意得出∠BDC=60°,得到△BCD为等边三角形,则BC=AC=CD=BD=20,从而求出船从A点到达C点所用的时间和船从C点到达D点所用的时间. 试题解析:∵在A处观测海岛B在北偏东60°方向,∴∠...

在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C= 度.

120° 【解析】 试题分析:先根据非负数的性质,在△ABC中,|sinA﹣|+(﹣cosB)2=0,求出sinA=与cosB=,再根据特殊角三角函数值求出∠A=30°与∠B=30°,根据三角形内角和定理即可得出∠C=180°﹣30°﹣30°=120°.

如图,在Rt△ABC中,∠C=90°,若sinA=,则cosB的是

A. B. C. D.

B 【解析】试题分析:在Rt△ABC中,∵∠C=90°, ∴∠A+∠B=90°, ∴cosB=sinA, ∵sinA=, ∴cosB=. 故选:B.

如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=__,若BM、CM分别平分∠ABC,∠ACB的外角平分线,则∠M=__.

140°; 40°. 【解析】∵∠A=100°, ∵∠ABC+∠ACB=180°?100°=80°, ∵BI、CI分别平分∠ABC,∠ACB, ∴∠IBC=∠ABC,∠ICB=∠ACB, ∴∠IBC+∠ICB=∠ABC+∠ACB= (∠ABC+∠ACB)= ×80°=40°, ∴∠BIC=180°?(∠IBC+∠ICB)=180°?40°=140°, ∵∠...

下面四个图形中,线段BE是△ABC的高的图是(  )

A. B. C. D.

D 【解析】试题分析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断. 【解析】 线段BE是△ABC的高的图是选项D. 故选D.

在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.

(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:

事件A

必然事件

随机事件

m的值

(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的可能性大小是,求m的值.

(1)填表见解析;(2)2. 【解析】试题分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件; (2)利用概率公式列出方程,求得m的值即可. 试题解析:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件; 当摸出2个或3个时,摸到黑球为随机事件, 故答案为:4;2,3. (2)根据题意得: , 解得:m=2, 所以m的...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网