题目内容
考点:切线的性质,含30度角的直角三角形
专题:几何图形问题
分析:由CA与⊙O相切知∠BAC=90°,运用在RT△BAC中,30°的角对的直角过是斜边的一半求解.
解答:解:∵CA与⊙O相切,切点为A,AB为⊙O的直径,
∴∠BAC=90°,
∵∠ABC=60°,⊙O的半径为2,
∴在RT△BAC中,∠C=30°,AB=4,
∴BC=2AB=2×4=8.
故答案为:8.
∴∠BAC=90°,
∵∠ABC=60°,⊙O的半径为2,
∴在RT△BAC中,∠C=30°,AB=4,
∴BC=2AB=2×4=8.
故答案为:8.
点评:本题考查了切线的性质及含30°角的直角三角形的知识,解题的关键是利用切线的性质得出△BAC是直角三角形.
练习册系列答案
相关题目
已知x-y=7,xy=2,则x2+y2的值为( )
| A、53 | B、45 | C、47 | D、51 |