题目内容
19.(1)求证:四边形AMDN是平行四边形;
(2)填空:
①当AM的值为10时,四边形AMDN是矩形;
②当AM的值为20时,四边形AMDN是菱形.
分析 (1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=$\frac{1}{2}$AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
解答 (1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为10时,四边形AMDN是矩形.理由如下:
∵AM=10=$\frac{1}{2}$AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
故答案为:10;
②当AM的值为20时,四边形AMDN是菱形.理由如下:
∵AM=20,
∴AM=AD=20,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形;
故答案为:20.
点评 本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质.
练习册系列答案
相关题目
12.对于任意有理数a,b,现用★定义一种运算:a★b=a2-b2.根据这个定义,代数式(x+y)★y可以化简为( )
| A. | xy+x2 | B. | xy-y2 | C. | x2+2xy | D. | x2 |