题目内容
20.下列说法中正确的是( )| A. | x2+y是整式 | B. | 多项式-3a2b+7a2b2+1的次数是3 | ||
| C. | 单项式$-\frac{2}{3}{a^2}b$的系数为-2 | D. | $\frac{1}{a}$和0都是单项式 |
分析 根据整式的定义判断A;根据多项式的次数的定义判断B;根据单项式的系数的定义判断C;根据单项式的定义判断D.
解答 解:A、x2+y是整式,故本选项正确;
B、多项式-3a2b+7a2b2+1的次数是4,故本选项错误;
C、单项式$-\frac{2}{3}{a^2}b$的系数为-$\frac{2}{3}$,故本选项错误;
D、$\frac{1}{a}$不是单项式,0是单项式,故本选项错误;
故选A.
点评 本题考查了单项式、单项式的系数、多项式的次数以及整式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,单项式中的数字因数叫做单项式的系数;几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数;单项式和多项式统称为整式.
练习册系列答案
相关题目
16.下列几何体中,主视图和左视图都是矩形的是( )
| A. | B. | C. | D. |
11.下列说法正确的是( )
| A. | 4的平方根是2 | B. | 1的立方根是±1 | ||
| C. | $\sqrt{4}$的算术平方根是2 | D. | -1的立方根是-1 |
8.下列运算中正确的是( )
| A. | 3a+2a=5a2 | B. | -x2•(-x)3=(-x)5 | C. | 2a2•a3=2a6 | D. | (a-b)(b-a)=-(a-b)2 |
15.下列为二次根式的是( )
①$\sqrt{3}$,②$\sqrt{x}$(x>0),③$\sqrt{a}$,④$\sqrt{4}$-2,⑤$\sqrt{-4}$-2.
①$\sqrt{3}$,②$\sqrt{x}$(x>0),③$\sqrt{a}$,④$\sqrt{4}$-2,⑤$\sqrt{-4}$-2.
| A. | ①②③ | B. | ①②④ | C. | ②③⑤ | D. | ③④⑤ |
5.下列说法中错误的是( )
| A. | 4的算术平方根是2 | B. | 负数有立方根,并且是负数 | ||
| C. | 8的立方根是±2 | D. | -1的立方根是-1 |
12.数学问题:在1~51这51个自然数中,每次取两个不同的数,使得所取的两个数之和大于51,有多少中不同取法?
数学模型:为找到解决上面问题的方法,先建立简单的数学模型进行研究:
(1)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同取法?
解决问题过程如下:
第1行有1种取法(1,5)
第2行有2种取法(2,4),(2,5)
第3行有3种取法(3,3),(3,4),(3,5)
第4行有4种取法(4,2),(4,3),(4,4),(4,5)
第5行有5种取法(5,1),(5,2),(5,3),(5,4),(5,5)
共有1+2+3+4+5种取法,因为每次取两个不同的数,所以在这些取法中不包括(3,3),(4,4),(5,5),要从总数中减去这3中取法,并且(4,2)与(2,4),(4,3)与(3,4),(5,1)与(1,5),(5,2)与(2,5),…(5,4)与(4,5)是同一种取法,因此共有$\frac{1+2+3+4+5-\frac{5+1}{2}}{2}$=6种不同的取法.
(2)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
解决问题过程如下:
第1行有1种取法(1,6)
第2行有2种取法(2,5),(2,6)
第3行有3种取法(3,4),(3,5),(3,6)
第4行有4种取法(4,3),(4,4),(4,5),(4,6)
第5行有5种取法(5,2),(5,3),(5,4),(5,5),(5,6)
第6行有6种取法(6,1),(6,2),(6,3),6,4),(6,5),(6,6)
共有1+2+3+4+5+6种取法,因为每次取两个不同的数,所以在这些取法中不包括(4,4),(5,5),(6,6),要从总数中减去这3中取法,并且(4,3)与(3,4),(5,2)与(2,5),(5,3)与(3,5),(5,4)与(4,5),(6,1)与(1,6),(6,2)与(2,6)…(6,5)与(5,6)是同一种取法,因此共有$\frac{1+2+3+4+5+6-\frac{6}{2}}{2}$=9种不同的取法.
归纳探究:
仿照上述研究问题的思路和解决过程,回答下列提出的问题:
(1)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有12种不同取法.(只填结果)
(2)在1~8这8个自然数中,每次取两个不同的数,使得所取的两个数之和大于8,共有16种不同取法.(只填结果)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}-1}{4}$种不同取法.(只填最简算式)
(4)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}}{4}$种不同取法.(只填最简算式)
类比应用:类比上述研究方法或应用其结论,解决下列提出的问题:
(5)各边长都是整数,最大边长为51的三角形有多少个?(直接列出算术,并计算结果)
数学模型:为找到解决上面问题的方法,先建立简单的数学模型进行研究:
(1)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种不同取法?
解决问题过程如下:
| 1 | 2 | 3 | 4 | 5 | |
| 1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) |
| 2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) |
| 3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) |
| 4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) |
| 5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) |
第2行有2种取法(2,4),(2,5)
第3行有3种取法(3,3),(3,4),(3,5)
第4行有4种取法(4,2),(4,3),(4,4),(4,5)
第5行有5种取法(5,1),(5,2),(5,3),(5,4),(5,5)
共有1+2+3+4+5种取法,因为每次取两个不同的数,所以在这些取法中不包括(3,3),(4,4),(5,5),要从总数中减去这3中取法,并且(4,2)与(2,4),(4,3)与(3,4),(5,1)与(1,5),(5,2)与(2,5),…(5,4)与(4,5)是同一种取法,因此共有$\frac{1+2+3+4+5-\frac{5+1}{2}}{2}$=6种不同的取法.
(2)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
解决问题过程如下:
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
| 2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
| 3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
| 4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
| 5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
| 6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
第2行有2种取法(2,5),(2,6)
第3行有3种取法(3,4),(3,5),(3,6)
第4行有4种取法(4,3),(4,4),(4,5),(4,6)
第5行有5种取法(5,2),(5,3),(5,4),(5,5),(5,6)
第6行有6种取法(6,1),(6,2),(6,3),6,4),(6,5),(6,6)
共有1+2+3+4+5+6种取法,因为每次取两个不同的数,所以在这些取法中不包括(4,4),(5,5),(6,6),要从总数中减去这3中取法,并且(4,3)与(3,4),(5,2)与(2,5),(5,3)与(3,5),(5,4)与(4,5),(6,1)与(1,6),(6,2)与(2,6)…(6,5)与(5,6)是同一种取法,因此共有$\frac{1+2+3+4+5+6-\frac{6}{2}}{2}$=9种不同的取法.
归纳探究:
仿照上述研究问题的思路和解决过程,回答下列提出的问题:
(1)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,共有12种不同取法.(只填结果)
(2)在1~8这8个自然数中,每次取两个不同的数,使得所取的两个数之和大于8,共有16种不同取法.(只填结果)
(3)在1~n(n为奇数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}-1}{4}$种不同取法.(只填最简算式)
(4)在1~n(n为偶数)这n个自然数中,每次取两个不同的数,使得所取的两个数之和大于n,共有$\frac{{n}^{2}}{4}$种不同取法.(只填最简算式)
类比应用:类比上述研究方法或应用其结论,解决下列提出的问题:
(5)各边长都是整数,最大边长为51的三角形有多少个?(直接列出算术,并计算结果)
9.
通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )
| A. | (a-b)2=a2-2ab+b2 | B. | (a+b)2=a2+2ab+b2 | C. | 2a(a+b)=2a2+2ab | D. | (a+b)(a-b)=a2-b2 |