题目内容
5.(1)计算:$\root{3}{8}$-$\sqrt{\frac{4}{25}}$;(2)解方程组:$\left\{\begin{array}{l}{3x-2y=0}\\{x-y=1}\end{array}\right.$.
分析 (1)原式利用立方根及算术平方根定义计算即可得到结果;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)原式=2-$\frac{2}{5}$=$\frac{8}{5}$;
(2)$\left\{\begin{array}{l}{3x-2y=0①}\\{x-y=1②}\end{array}\right.$,
①-②×2得:x=-2,
把x=-2代入②得:y=-3,
则方程组的解为$\left\{\begin{array}{l}{x=-2}\\{y=-3}\end{array}\right.$.
点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
16.
如图,两根铁棒直立于桶底水平的木桶,在桶中加入水后,一根露出水面的长度是它的$\frac{1}{3}$,另一根露出水面的长度是它的$\frac{1}{5}$.两根铁棒长度之和为220cm,求此时木桶中水的深度.如果设一根铁棒长xcm,另一根铁棒长ycm,则可列方程组为( )
| A. | $\left\{\begin{array}{l}{x+y=220}\\{\frac{1}{3}x=\frac{1}{5}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=220}\\{(1-\frac{1}{3})x=(1-\frac{1}{5})y}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=220}\\{220-\frac{1}{3}x=220-\frac{1}{5}y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=220}\\{3x=5y}\end{array}\right.$ |
20.下列计算结果正确的是( )
| A. | $\sqrt{2}+\sqrt{3}$=$\sqrt{5}$ | B. | 3$\sqrt{2}$-$\sqrt{2}$=3 | C. | $\sqrt{2}×\sqrt{5}$=$\sqrt{10}$ | D. | $\frac{\sqrt{2}}{\sqrt{5}}$=5$\sqrt{10}$ |