题目内容

14.方程组$\left\{\begin{array}{l}{2x+y=3}\\{3x-z=7}\\{x-y+3z=0}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=2}\\{y=1}\\{y=-1}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=-1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=1}\end{array}\right.$

分析 由②③消去z,转化为二元方程组即可解决问题.

解答 解:$\left\{\begin{array}{l}{2x+y=3}&{①}\\{3x-z=7}&{②}\\{x-y+3z=0}&{③}\end{array}\right.$
②×3+③得到:10x-y=21   ④
由①④解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$代入②得z=-1,
∴$\left\{\begin{array}{l}{x=2}\\{y=-1}\\{z=-1}\end{array}\right.$,
故选C.

点评 本题考查三元方程组,解题的关键是三元方程组转化为二元方程组,学会转化的数学思想,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网