题目内容
19.(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,求△ABC的面积.
分析 (1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
(3)先根据勾股定理求出AC,得出△ACE的面积=$\frac{1}{2}$AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=$\frac{1}{2}$AB•AC,代入数据即可得到结论.
解答 (1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;
理由如下:
由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC=$\sqrt{A{E}^{2}+E{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
△ACE的面积=$\frac{1}{2}$AE×EC=$\frac{1}{2}$×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=$\frac{1}{2}$AB•AC=$\frac{1}{2}$×12×5=30.
点评 本题考查了矩形的判定与性质、平行线的性质、角平分线、等腰三角形的判定、勾股定理以及面积的计算;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.
练习册系列答案
相关题目
11.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.
估计这个事件发生的概率是0.25(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:从红桃A、黑桃A、梅花A、方块A四张牌中,随机抽取一张,则抽到方块A的概率为0.25.
| 试验次数 | 10 | 50 | 100 | 200 | 500 | 1000 | 2000 |
| 事件发生的频率 | 0.245 | 0.248 | 0.251 | 0.253 | 0.249 | 0.252 | 0.251 |
8.
某学校计划开设A、B、C、D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.
校本课程选修意向统计表
请根据图表信息,解答下列问题:
(1)参与调查的学生有100名;
(2)在统计表中,a=40,b=15,请你补全条形统计图;
(3)若该校共有2000名学生,请你估算该校有多少名学生选修A课程?
校本课程选修意向统计表
| 选修课程 | 所占百分比 |
| A | a% |
| B | 25% |
| C | b% |
| D | 20% |
(1)参与调查的学生有100名;
(2)在统计表中,a=40,b=15,请你补全条形统计图;
(3)若该校共有2000名学生,请你估算该校有多少名学生选修A课程?
9.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为( )
| A. | $\frac{3}{4}$或1 | B. | $\frac{1}{4}$或1 | C. | $\frac{3}{4}$或$\frac{1}{2}$ | D. | $\frac{1}{4}$或$\frac{3}{4}$ |