题目内容
18.| A. | 55° | B. | 65° | C. | 75° | D. | 85° |
分析 根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用直角三角形两锐角互余计算出∠B=65°,然后根据圆周角定理求解.
解答 解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°-25°=65°,
∴∠ADC=∠B=65°.
故选B.
点评 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
练习册系列答案
相关题目
10.
中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给信息,解答下列问题:
(1)m=70,n=0.2;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
| 成绩x/分 | 频数 | 频率 |
| 50≤x<60 | 10 | 0.05 |
| 60≤x<70 | 30 | 0.15 |
| 70≤x<80 | 40 | n |
| 80≤x<90 | m | 0.35 |
| 90≤x≤100 | 50 | 0.25 |
(1)m=70,n=0.2;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在80≤x<90分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
7.若关于x的分式方程$\frac{3}{x-4}$+$\frac{x+m}{4-x}$=1有增根,则m的值是( )
| A. | m=0或m=3 | B. | m=3 | C. | m=0 | D. | m=-1 |