ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÇókµÄÖµ¼°b¡¢cµÄÊýÁ¿¹ØÏµÊ½£»£¨ÓÃcµÄ´úÊýʽ±íʾb£©
£¨2£©ÈôÁ½º¯ÊýµÄͼÏó³ý¹«¹²µãAÍ⣬ÁíÍ⻹ÓÐÁ½¸ö¹«¹²µãB£¨m£¬1£©¡¢C£¨1£¬n£©£¬ÊÔÔÚÈçͼËùʾµÄÖ±½Ç×ø±êϵÖл³öÕâÁ½¸öº¯ÊýµÄͼÏ󣬲¢ÀûÓÃͼÏ󻨴ð£¬xΪºÎֵʱ£¬y1£¾y2£»
£¨3£©µ±cÖµÂú×ãʲôÌõ¼þʱ£¬º¯Êýy2=-x2+bx+cÔÚx¡Ü-$\frac{1}{2}$µÄ·¶Î§ÄÚËæxµÄÔö´ó¶øÔö´ó£¿
·ÖÎö £¨1£©½«µãAµÄ×ø±ê´úÈëÁ½º¯ÊýµÄ½âÎöʽÖм´¿ÉµÃ³ökµÄÖµ£¬ÒÔ¼°bÓëcµÄÊýÁ¿¹ØÏµ£®
£¨2£©ÔÚ£¨1£©ÖÐÒѵóöÁË·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬ÄÇô¿É¸ù¾ÝB£¬CÁ½µã¶¼ÔÚ·´±ÈÀýº¯ÊýÉÏ¿ÉÇó³öB£¬CµÄ×ø±ê£¬È»ºó¸ù¾ÝB£¬CµÄ×ø±êÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£®½ø¶ø¿É¸ù¾ÝÁ½º¯ÊýµÄ½âÎöʽÀ´µÃ³öº¯ÊýµÄͼÐΣ¬ÒÔ¼°y1£¾y2ʱ£¬xµÄȡֵ·¶Î§£®
£¨3£©ÓÉÓÚÅ×ÎïÏß¿ª¿ÚÏòÏ£¬Òò´Ë¶Ô³ÆÖá×ó±ß£¬Å×ÎïÏßÉϵĵ㶼ÊÇËæxµÄÔö´ó¶øÔö´ó£¬ÄÇô¶Ô³ÆÖá-$\frac{b}{2a}$¡Ü-$\frac{1}{2}$£¬È»ºóÔÙ¸ù¾Ý£¨1£©ÖÐb£¬cµÄ´óС¹ØÏµ¼´¿ÉÇó³öcµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©½«A£¨-1£¬2£©´úÈë·´±ÈÀýº¯Êýy1=$\frac{k}{x}$ÖУ¬![]()
¿ÉµÃk=£¨-1£©¡Á2=-2£¬
½«A£¨-1£¬2£©´úÈë¶þ´Îº¯Êýy2=-x2+bx+c£¬
¿ÉµÃ2=-1-b+c£¬
¼´b=c-3£®
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬BµÄ×ø±êΪ£¨-2£¬1£©£¬CµÄ×ø±êΪ£¨1£¬-2£©£®
·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy1=-$\frac{2}{x}$£¬
Å×ÎïÏߵĽâÎöʽΪy2=-x2-2x+1£®
ÈçͼÓÒͼ£ºÓÉͼ¿ÉÖª£ºµ±x£¼-2£¬-1£¼x£¼0ºÍ1£¼xʱ£¬y1£¾y2£®
£¨3£©¡ßÅ×ÎïÏß¿ª¿ÚÏòÏ£¬Òò´Ë¶Ô³ÆÖá×ó±ß£¬Å×ÎïÏßÉϵĵ㶼ÊÇËæxµÄÔö´ó¶øÔö´ó£¬
¼´-$\frac{b}{2a}$¡Ü-$\frac{1}{2}$£¬
¡à-$\frac{c-3}{-2}$¡Ü-$\frac{1}{2}$£¬
½âµÃc¡Ü2£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯ÊýºÍ¶þ´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬ÀûÓÃÌõ¼þÀ´È·¶¨b£¬cµÄÖµ»òÊýÁ¿¹ØÏµÊǽâÌâµÄ¹Ø¼ü£®
| A£® | $\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=\frac{54}{60}}\\{\frac{x}{5}+\frac{y}{4}=\frac{42}{60}}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=\frac{54}{60}}\\{\frac{x}{4}+\frac{y}{5}=\frac{42}{60}}\end{array}\right.$ | ||
| C£® | $\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=54}\\{\frac{x}{5}+\frac{y}{4}=42}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=54}\\{\frac{x}{4}+\frac{y}{5}=42}\end{array}\right.$ |