如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形.

见解析 【解析】试题分析:通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形. 证明:∵BE⊥AD,CF⊥AD, ∴∠AEB=∠DFC=90°, ∵AB∥CD, ∴∠A=∠D, 在△AEB与△DFC中, , ∴△AEB≌△DFC(ASA)...

解方程时,去分母得( )

A. B.

C. D.

C 【解析】观察可得最简公分母是(x-1)(x-3),方程两边都乘最简公分母,即可把分式方程转换为整式方程. 方程两边同乘(x-1)(x-3)得(x-1)(x-3)+2(x-3)=(x-5)(x-1), 故选C.

+M=,则M为( )

A. B. C. D.

B 【解析】∵+M=, ∴M=. 故选B.

化简的结果是__;当x=2时,原式的值为__.

x 2 【解析】试题解析: 原式 当时,原式 故答案为:

如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,求证:

(1)△BCE≌△ACD;

(2)CF=CH;

(3)△FCH是等边三角形;

(4)FH∥BD.

见解析 【解析】试题分析:(1)由等边三角形的三边相等,三角都是60°,再根据平角的关系,就能证明△BCE≌△ACD;(2)由△BCE≌△ACD得出对应角相等,结合等边三角形的边角特点证明△BCF≌△ACH,能得出CF=CH;(3)两边等,加上一个角60°推出△CFH是等边三角形;(4)根据内错角相等,两直线平行推出FH∥BD. 试题解析: 证明:∵△ABC和△CDE都是等边三角...

等腰三角形的一个外角为110°,则底角的度数可能是_______.

70°或55° 【解析】当110°是等腰三角形底角的外角时,底角为70°;当110°是等腰三角形顶角的外角时,因为等腰三角形两底角相等,所以一个底角的度数等于外角110°的一半,即55°.

在△ABC中,AB=AC,BD是角平分线,BD=AD,求∠A的度数.

∠A=36° 【解析】试题分析:设∠A的度数为x°,由等腰三角形的性质分别表示出∠ABC和∠C的度数,再根据三角形内角和列方程求解即可. 试题解析: 设∠A=x°, ∵BD=AD, ∴∠A=∠ABD=x°, ∴∠BDC=∠A+∠ABD=2x°, ∵BD=BC, ∴∠BDC=∠BCD=2x°, ∵AB=AC, ∴∠ABC=∠BCD=2x°,...

(x-2y)2等于_______;

x2-8xy+4y2 【解析】根据完全平方公式可得:(x-2y)2=x2-8xy+4y2.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网