题目内容
11.(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=3,AB=4,求菱形ADCF的面积.
分析 (1)根据AAS证△AFE≌△DBE;
(2)利用全等三角形的对应边相等得到AF=BD.证出四边形ADCF是平行四边形,再由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;
(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.
解答 (1)证明:①∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AEF和△DEB中,$\left\{\begin{array}{l}{∠AFE=∠DBE}&{\;}\\{∠FEA=∠BED}&{\;}\\{AE=DE}&{\;}\end{array}\right.$,
∴△AEF≌△DEB(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=$\frac{1}{2}$BC,
∴四边形ADCF是菱形;
(3)解:连接DF,如图所示:
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=4,
∵四边形ADCF是菱形,
∴菱形ADCF的面积=$\frac{1}{2}$AC?DF=$\frac{1}{2}$×3×4=6.
点评 本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,菱形的面积计算;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.
练习册系列答案
相关题目