题目内容

9.用代入法解下列方程组:
(1)$\left\{\begin{array}{l}{2x+y=3}\\{x+2y=-6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+5y=4}\\{3x-6y=5}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+y=8}\\{3x-y=4}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{2x+5y=8}\\{x-3y=-7}\end{array}\right.$.

分析 代入法的步骤:先选其中的一个方程用其中一个未知数表示另一个未知数,再代入另一个方程,从而达到消元的目的

解答 解:(1)解方程组$\left\{\begin{array}{l}{2x+y=3}&{①}\\{x+2y=-6}&{②}\end{array}\right.$,
由①得,y=3-2x  ③,
将y=3-2x代入②,得:x+2(3-2x)=-6,解得:x=4,
将x=4代入③,得:y=3-2×4=-5,
故方程组的解为:$\left\{\begin{array}{l}{x=4}\\{y=-5}\end{array}\right.$;
(2)解方程组$\left\{\begin{array}{l}{x+5y=4}&{①}\\{3x-6y=5}&{②}\end{array}\right.$,
由①得:x=4-5y ③,
将③代入②得:3(4-5y)-6y=5,解得:y=$\frac{1}{3}$,
将y=$\frac{1}{3}$代入③,得:x=4-5×$\frac{1}{3}$=$\frac{7}{3}$,
故方程组的解为:$\left\{\begin{array}{l}{x=\frac{7}{3}}\\{y=\frac{1}{3}}\end{array}\right.$;
(3)解方程组$\left\{\begin{array}{l}{3x+y=8}&{①}\\{3x-y=4}&{②}\end{array}\right.$,
由①得:y=8-3x ③,
将③代入②得:3x-(8-3x)=4,解得:x=2,
将x=2代入③,得:y=8-3×2=2,
故方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$;
(4)解方程组$\left\{\begin{array}{l}{2x+5y=8}&{①}\\{x-3y=-2}&{②}\end{array}\right.$,
由②得,x=3y-2  ③,
将③代入①,得:2(3y-2)+5y=8,解得:y=$\frac{12}{11}$,
将y=$\frac{12}{11}$代入②得:x-$\frac{36}{11}$=-2,解得:x=$\frac{14}{11}$,
故方程组的解为:$\left\{\begin{array}{l}{x=\frac{14}{11}}\\{y=\frac{12}{11}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网