ÌâÄ¿ÄÚÈÝ
9£®¹Û²ìÏÂÁи÷ʽ£®¢Ù$\frac{1}{2¡Á3}$=$\frac{1}{2}-\frac{1}{3}$£»¢Ú$\frac{1}{3¡Á4}$=$\frac{1}{3}-\frac{1}{4}$£»¢Û$\frac{1}{4¡Á5}$=$\frac{1}{4}-\frac{1}{5}$£»¢Ü$\frac{1}{5¡Á6}$=$\frac{1}{5}$-$\frac{1}{6}$£®£¨1£©ÉènΪÕûÊý£¬ÇëÓú¬nµÄ´úÊýʽ±íʾÄã·¢ÏֵĹæÂÉ£®
£¨2£©ÄãÄÜÓÃÄã·¢ÏֵĹæÂÉÇó$\frac{1}{£¨x-1£©£¨x-2£©}$+$\frac{1}{£¨x-2£©£¨x-3£©}$+$\frac{1}{£¨x-3£©£¨x-4£©}$µÄ½á¹ûÂð£¿
·ÖÎö £¨1£©¹Û²ì¸ø¶¨µÈʽ£¬¸ù¾ÝµÈʽµÄ±ä»¯ÕÒ³ö±ä»¯¹æÂÉ¡°$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}$-$\frac{1}{n+1}$£¨nΪÕûÊý£¬ÇÒn¡Ù0ºÍ-1£©¡±£»
£¨2£©ÒÔ¼°£¨1£©µÃ³öµÄ¹æÂɼ´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¹Û²ì£¬·¢ÏÖ¹æÂÉ£º$\frac{1}{2¡Á3}$=$\frac{1}{2}-\frac{1}{3}$£¬$\frac{1}{3¡Á4}$=$\frac{1}{3}-\frac{1}{4}$£¬$\frac{1}{4¡Á5}$=$\frac{1}{4}-\frac{1}{5}$£¬$\frac{1}{5¡Á6}$=$\frac{1}{5}$-$\frac{1}{6}$£¬¡£¬
¡à$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}$-$\frac{1}{n+1}$£¨nΪÕûÊý£¬ÇÒn¡Ù0ºÍ-1£©£®
£¨2£©½áºÏ£¨1£©µÄ½áÂÛ¿ÉÖª£º
Ôʽ=$\frac{1}{x-2}-\frac{1}{x-1}$+$\frac{1}{x-3}-\frac{1}{x-2}$+$\frac{1}{x-4}-\frac{1}{x-3}$£¬
=$\frac{1}{x-4}-\frac{1}{x-1}$£¬
=$\frac{3}{£¨x-4£©£¨x-1£©}$£®
µãÆÀ ±¾Ì⿼²éÁ˹æÂÉÐÍÖеÄÊý×ֵı仯À࣬½âÌâµÄ¹Ø¼üÊÇÕÒ³ö±ä»¯¹æÂÉ¡°$\frac{1}{n£¨n+1£©}$=$\frac{1}{n}$-$\frac{1}{n+1}$£¨nΪÕûÊý£¬ÇÒn¡Ù0ºÍ-1£©¡±£®±¾ÌâÊôÓÚ»ù´¡Ì⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾ÝµÈʽµÄ±ä»¯ÕÒ³ö±ä»¯¹æÂÉÊǹؼü£®
| A£® | 3a+2b=5ab | B£® | 2a3+3a2=5a5 | C£® | 5a2-4a2=1 | D£® | 5a2b-5ba2=0 |