题目内容

7.如图,已知BE、CE分别平分∠ABC、∠BCD,且∠1+∠2=90°,求证:AB∥CD.
证明:如图,∵BE平分∠ABD(已知)
∴∠ABC=2∠1角平分线的定义
∵CE平分∠DCB(已知)
∴∠BCD=2∠2角平分线的定义
∴∠ABC+∠BCD=2∠1+2∠2=2(∠1+∠2)
又∵∠1+∠2=90°(已知)
∴∠ABC+∠BCD=2×90°=180°,
∴AB∥CD同旁内角互补,两直线平行.

分析 先根据角平分线的定义得出∠ABC=2∠1,∠BCD=2∠2,再由∠1+∠2=90°可得出∠ABC+∠BCD=180°,由此可得出结论.

解答 证明:∵BE平分∠ABD(已知),
∴∠ABC=2∠1(角平分线的定义).
∵CE平分∠DCB(已知),
∴∠BCD=2∠2(角平分线的定义),
∴∠ABC+∠BCD=2∠1+2∠2=2(∠1+∠2)
又∵∠1+∠2=90°(已知)
∴∠ABC+∠BCD=2×90°=180°,
∴AB∥CD(同旁内角互补,两直线平行).
故答案为:∠ABC,角平分线的定义,∠BCD,角平分线的定义,∠ABC,∠BCD,同旁内角互补,两直线平行.

点评 本题考查的是平行线的判定,用到的知识点为:同旁内角互补,两直线平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网