题目内容
10.某同学解一元一次不等式1-$\frac{2}{3}$(x-1)≤2-$\frac{4}{3}$x的过程如下:(1)-$\frac{2}{3}$(x-1)≤2-1-$\frac{4}{3}$x
(2)x-1≤-$\frac{3}{2}$+2x
(3)-x≤-$\frac{1}{2}$
(4)x≤$\frac{1}{2}$,其中第一次出现错误的步骤是( )
| A. | (4) | B. | (3) | C. | (2) | D. | (1) |
分析 移项,系数化成1,移项,合并同类项,系数化成1即可.
解答 解:1-$\frac{2}{3}$(x-1)≤2-$\frac{4}{3}$x的过程如下:
(1)-$\frac{2}{3}$(x-1)≤2-1-$\frac{4}{3}$x
(2)x-1≥-$\frac{3}{2}$+2x(原题出现错误)
(3)-x≥-$\frac{1}{2}$
(4)x≤$\frac{1}{2}$,
故选C.
点评 本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.
练习册系列答案
相关题目
5.如果-3a2ybx+1与$\frac{1}{5}$a3xby是同类项,则( )
| A. | $\left\{\begin{array}{l}{x=-2}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-2}\\{y=-3}\end{array}\right.$ |
19.下列计算正确的是( )
| A. | x3+x3=x6 | B. | (ab4)2=ab8 | C. | (m5)5=m10 | D. | x3y3=(xy)3 |