题目内容
13.计算:$\frac{201{4}^{3}-2×201{4}^{2}-2012}{201{4}^{3}+201{4}^{2}-2015}$.分析 利用提取公因式法把分子分母逐步分解,再进一步约分得出答案即可.
解答 解:原式=$\frac{201{4}^{2}×(2014-2)-2012}{201{4}^{2}×(2014+1)-2015}$
=$\frac{2012×(201{4}^{2}-1)}{2015×(201{4}^{2}-1)}$
=$\frac{2012}{2015}$.
点评 此题考查因式分解的实际运用,掌握因式分解的方法是解决问题的关键.
练习册系列答案
相关题目
4.与方程组$\left\{\begin{array}{l}{x+3y=-3}\\{x+y=-2}\end{array}\right.$有相同解的方程组是( )
| A. | $\left\{\begin{array}{l}{x-y=1}\\{3x=5-y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=y-1}\\{3x=5-y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=y-1}\\{3x+5+y=0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=y-1}\\{3x+5-y=0}\end{array}\right.$ |