题目内容

已知:如图,四边形ABCD是平行四边形,分别以AB、AD为腰作等腰三角形△ABF和等腰三角形△ADE,且顶角∠BAF=∠DAE,联结BD、EF相交于点G,BD与AF相交于点H.
(1)求证:BD=EF;
(2)当线段FG、GH和GB满足怎样的数量关系时,四边形ABCD是菱形,并加以证明.
考点:相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质,菱形的判定
专题:
分析:(1)求出∠BAD=∠FAE,根据全等三角形的判定推出△BAD≌△FAE,即可得出答案;
(2)根据相似三角形的判定推出△GHF∽△GFB,推出∠EFA=∠FBD,求出AB=AD,根据菱形的判定推出即可.
解答:(1)证明:∵∠BAF=∠DAE,
∴∠BAF+∠FAD=∠DAE+∠FAD,
即∠BAD=∠FAE,
在△BAD和△FAE中,
AB=AF
∠BAD=∠EAF
AD=AE

∴△BAD≌△FAE(SAS),
∴BD=EF.

(2)当线段满足FG2=GH×GB时,四边形ABCD是菱形,
证明:∵FG2=GH×GB,
FG
BG
=
GH
FG

 又∵∠BGF=∠FGB,
∴△GHF∽△GFB,
∴∠EFA=∠FBD,
∵△BAD≌△FAE,
∴∠EFA=∠ABD,
∴∠FBD=∠ABD,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADB=∠FBD,
∴∠ADB=∠ABD,
∴AB=AD,
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
点评:本题考查了全等三角形的性质和判定,平行四边形的性质,菱形的判定,相似三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网