题目内容

10.如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
(2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;
(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.

分析 (1)根据抛物线F:y=x2-2mx+m2-2过点C(-1,-2),可以求得抛物线F的表达式;
(2)根据题意,可以求得yP的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;
(3)根据题意可以列出相应的不等式组,从而可以解答本题

解答 解:(1)∵抛物线F经过点C(-1,-2),
∴-2=(-1)2-2×m×(-1)+m2-2,
解得,m=-1,
∴抛物线F的表达式是:y=x2+2x-1;
(2)当x=-2时,yp=4+4m+m2-2=(m+2)2-2,
∴当m=-2时,yp的最小值-2,
此时抛物线F的表达式是:y=x2+4x+2=(x+2)2-2,
∴当x≤-2时,y随x的增大而减小,
∵x1<x2≤-2,
∴y1>y2
(3)m的取值范围是-2≤m≤0或2≤m≤4,
理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),
∴$\left\{\begin{array}{l}{{m}^{2}-2≤2}\\{{2}^{2}-2m×2+{m}^{2}-2≥2}\end{array}\right.$或$\left\{\begin{array}{l}{{m}^{2}-2≥2}\\{{2}^{2}-2m×2+{m}^{2}-2≤2}\end{array}\right.$或$\left\{\begin{array}{l}{{m}^{2}-2≥0}\\{{2}^{2}-2m×2+{m}^{2}-2≥2}\\{0<-\frac{-2m}{2×1}<2}\end{array}\right.$,
解得,-2≤m≤0或2≤m≤4.

点评 本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网