题目内容

下列各式中,是一元一次不等式的是( )

A. 5+4>8 B. 2x-1 C. 2x≤5 D. -3x≥0

C 【解析】试题解析:A、是不等式,但不是一元一次不等式,故本选项错误; B、是一元一次方程,不是一元一次不等式,故本选项错误; C、是一元一次不等式,故本选项正确; D、不是一元一次不等式,故本选项错误; 故选C.
练习册系列答案
相关题目

任取不等式组的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的可能性为____.

【解析】解不等式k-3≤0可得k≤3,解不等式2k+5>0,可得k>-,所以可求得不等式组的解集为-<k≤3,所以k的整数解为-2、-1、0、1、2、3,分别代入方程2x+k=-1,可得x=、0、-、-1、-、-2,所以非负数解有了两个,其可能性为: . 故答案为: .

M是△ABC的AB边上的中点,连接CM并延长到D,使MD=CM,则AD与BC________,BD与AC________。

平行且相等 平行且相等 【解析】【解析】 如图,∵M是△ABC的AB边上的中点,∴AM=MB.∵MD=CM,∴四边形ADBC是平行四边形,∴AD=CB,AD∥CB,BD=AC,BD∥AC.故答案为:平行且相等,平行且相等.

已知实数a是不等于3的常数,解不等式组,并依据a的取值情况写出其解集.

当a>3时,不等式组的解集为x≤3;当a<3时,不等式组的解集为x<a. 【解析】试题分析:分别解两个不等式,然后根据不等式组的解集的确定法分情况讨论即可. 试题解析:【解析】 解①得:x≤3,解②得:x<a, ∵实数a是不等于3的常数, ∴当a>3时,不等式组的解集为x≤3; 当a<3时,不等式组的解集为x<a.

已知ab=4,若2≥b≥1,则a的取值范围是________.

4≥a≥2 【解析】根据已知条件可以求得b=,然后将b的值代入不等式2≥b≥1,通过解该不等式即可求得a的取值范围4≥a≥2. 故答案为:4≥a≥2.

下列不等式变形正确的是( )

A.由a>b,得a﹣2<b﹣2   B.由a>b,得|a|>|b|

C.由a>b,得﹣2a<﹣2b   D.由a>b,得a2>b2

C 【解析】 试题分析:根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得: A、等式的两边都减2,不等号的方向不变,故A错误; B、如a=2,b=﹣3,a>b,得|a|<|b|,故B错误; C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确; ...

在四边形ABCD中,∠A=∠C=90°,∠B与∠D的度数比是3:2,求∠B,∠D的度数.

∠B=108°,∠D=72°. 【解析】分析:由已知∠A=∠C=90°,较易得到∠B+∠D=180°,再根据已知的∠B:∠D=3:2,即可求解. 本题解析: ∵∠ A +∠ C =90°+90°=180°,∴∠ B +∠ D =360°-(∠ A +∠ C )=360°-1 80°=180°.设∠ B =( 3 x )°,则∠ D =(2 x )°,∴(3 x )°+(2 x )...

如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是(   )

A. B. C. D.

D 【解析】试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确. 故选D.

在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(  )

A. B. C. D.

A 【解析】试题分析:首先根据勾股定理可得:AB=,根据等面积法可得:点C到AB的距离为:(9×12)÷15=.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网